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A physicochemical-sensing electronic skin 
for stress response monitoring
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Jiahong Li1, Wenzheng Heng1, Jihong Min    1, Alison Lao    1, Tzung K. Hsiai3, 
Jennifer A. Sumner    4 & Wei Gao    1 

Approaches to quantify stress responses typically rely on subjective 
surveys and questionnaires. Wearable sensors can potentially be used to 
continuously monitor stress-relevant biomarkers. However, the biological 
stress response is spread across the nervous, endocrine and immune 
systems, and the capabilities of current sensors are not sufficient for 
condition-specific stress response evaluation. Here we report an electronic 
skin for stress response assessment that non-invasively monitors three vital 
signs (pulse waveform, galvanic skin response and skin temperature) and six 
molecular biomarkers in human sweat (glucose, lactate, uric acid, sodium 
ions, potassium ions and ammonium). We develop a general approach 
to prepare electrochemical sensors that relies on analogous composite 
materials for stabilizing and conserving sensor interfaces. The resulting 
sensors offer long-term sweat biomarker analysis of more than 100 h with 
high stability. We show that the electronic skin can provide continuous 
multimodal physicochemical monitoring over a 24-hour period and during 
different daily activities. With the help of a machine learning pipeline, 
we also show that the platform can differentiate three stressors with an 
accuracy of 98.0% and quantify psychological stress responses with a 
confidence level of 98.7%.

Stress is a process triggered by demanding physical or psychological 
events and may cause anxiety as a prototypical psychological response. 
Although acute stress responses in healthy individuals can be adaptive 
and manageable, persistent experiences of stress can have deleterious 
effects on mental and physical health1,2, and many mechanisms behind 
the stress response are yet unknown3,4 (Supplementary Note 1). In the 
United States alone, more than 50 million adults suffer from depression, 
and after the onset of the COVID-19 pandemic, the number of people 
suffering from mental disorders has drastically risen, causing a heavy 
burden on the healthcare system5,6. Elevated levels of stress and anxiety 
also pose a large burden to high-demand occupation workers7 such as 

athletes8, soldiers9, first responders10 and aviation personnel11, poten-
tially interfering with their cognitive performance and decision-making 
process12. In response to these effects, understanding and evaluating 
the stress response has become a cornerstone of clinical healthcare. 
However, current gold standards for clinical stress response assess-
ments rely on surveys and performance evaluations, which can be 
highly subjective13–15. Thus, there is a need to develop a more efficient 
and effective stress assessment tool that is not characterized by these 
limitations16,17.

Non-invasive biomarkers are potentially a reliable alternative 
for monitoring the stress response because of the interdependencies 
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are not sufficient for condition-specific assessment of psychological 
and physiological stress33; existing wearable biochemical sensors 
suffer from poor operational stability in biofluids, which precludes 
reliable long-term continuous monitoring34; access to human sweat 
usually requires physical activity that can affect an individual’s stress; 
and despite recent progress on stress hormone analysis, continuous 
monitoring of sweat stress hormones at physiologically relevant lev-
els using wearable sensors has not yet been achieved because of the 
hormones’ extremely low concentrations35–37. Therefore, although 
understanding and monitoring the endocrine response to stress is a 
promising approach, it is still underdeveloped.

In this Article, we report a consolidated artificial-intelligence- 
reinforced electronic skin (CARES) with robust long-term sensing 
capabilities for stress response monitoring (Fig. 1a). Fabricated using 
a scalable inkjet-printing approach, the wearable device is capable 
of multiplexed, non-invasive monitoring of key stress-related physi-
ological signals (pulse waveform, GSR and skin temperature), sweat 
metabolites (glucose, lactate and UA) and electrolytes (Na+, K+ and 
NH4

+) during daily activities (Fig. 1b,c). Through the integration of a 
miniaturized iontophoresis (IP) module, sweat can be induced autono-
mously at rest without the need for vigorous exercise.

We develop a general approach to prepare highly stable and sen-
sitive electrochemical biosensors, which uses analogous composite 

between biological and psychological stress. In particular, stress 
induces a complex biological response in the nervous, endocrine and 
immune systems (Fig. 1a)18,19. The perception of stress activates the 
hypothalamic–pituitary–adrenal (HPA) axis and sympathetic adrenal 
medullary axis from the hypothalamus in the brain. Acetylcholine 
in nerve fibres from both axes stimulates the adrenal gland, releas-
ing stress hormones (for example, epinephrine, norepinephrine and 
cortisol) into the blood. Acetylcholine can also activate sudomotor 
neurons connected to sweat glands that release ion-rich fluids. This 
sympathetic activity can be indirectly measured through the galvanic 
skin response (GSR) and sweat electrolyte levels20. The released stress 
hormones inhibit insulin production, affecting the synthesis of metabo-
lites such as glucose, lactate and uric acid (UA), as well as narrow arter-
ies, boosting cardiac activities. By monitoring these stress-relevant 
biomarkers, it is possible to develop a comprehensive and objective 
health profile relating biophysical and biochemical signals to dynamic 
stress response monitoring21–23.

Recent advances in wearable sensors have enabled real-time and 
continuous monitoring of physical vital signs24–28. Through in situ 
human sweat analysis, wearable biosensors can provide insightful 
information about an individual’s health at the molecular level29–32. 
However, various challenges remain to be addressed before such sen-
sors can be of use in clinical applications: a limited set of physical signals 
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Fig. 1 | CARES for stress response monitoring. a, Illustration of the CARES that 
continuously monitors multimodal physiological and biochemical responses 
from skin and performs artificial-intelligence-powered stress assessment. b, 
Schematic of the flexible CARES sensor patch and main functionalities: vital sign 
monitoring, sweat stimulation and sampling and key metabolite and electrolyte 

detection. c, Schematic of layered structure of the CARES that assembles the 
sensor and microfluidics module. d,e, Optical images of a CARES attached to the 
skin of a human subject (d) and the soft electronic-skin interface (e). Scale bars, 
1 cm. f, ML pipeline for CARES-enabled stressor classification and stress/anxiety 
level assessment. SAM, sympathetic–adreno–medullar.
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materials for stabilizing and conserving sensor interfaces. The result-
ing biochemical sensors offer long-term stability of more than 100 h 
of continuous operation with minimal signal drifts (amperometric 
signals decaying less than 0.07% per hour and potentiometric signals 
drift less than 0.04 mV per hour).

Built on an ultrathin flexible polyimide (PI) substrate (4 μm) for 
flexibility and robustness as well as integrated with microfluidics, the 
CARES device conformally laminates on the wrist for reliable and robust 
sensing (Fig. 1d,e). This allows for 24-hour continuous monitoring of 
daily activities, yielding greater insight into how these signals vary 
throughout the day. With a machine learning (ML) pipeline incorpo-
rating previously inaccessible multimodal data (Fig. 1f), we show that 
the physicochemical sensor data obtained by the wearable technology 
can be used to classify responses to stressors at high accuracies and 
predict state anxiety levels (a key psychological response to stress) 
with high reliability.

The CARES platform
The CARES platform consists of a multilayered sensor patch and a 
skin-interfaced laser-engraved microfluidic module (Fig. 1d,e). The sen-
sor patch contains carbachol hydrogel-loaded sweat-stimulation elec-
trodes, three enzymatic biosensors, three ion-selective sensors (ISEs), 
a capacitive pulse sensor, a resistive GSR sensor and a skin temperature 
sensor. The platform can be mass-fabricated through serial inkjet print-
ing of silver and carbon as the interconnects and electrodes for the top 
and bottom layers (Supplementary Fig. 1). A middle polydimethylsilox-
ane (PDMS)-based airgap layer was spin-coated between the top and 
bottom layers, as the soft PDMS facilitates pulse pressure sensitivity 
and sweat reservoir collection. The microfluidic module was assembled 
in a sandwiched structure (PDMS/polyethylene terephthalate/medical 
tape) and contains two separate reservoirs (Supplementary Figs. 2 and 
3) that enable fresh sweat sampling and rapid refreshing for accurate 
sweat analysis with high temporal resolution. Carbachol was used for 
sweat induction as it enables long-lasting sudomotor axon reflex sweat 
secretion from the surrounding sweat glands owing to its nicotinic 
effects38. In this work, six molecular biomarkers (glucose, lactate, UA, 
Na+, K+ and NH4

+) were selected as the detection targets because of their 
strong associations with stress responses (Supplementary Note 2)39–43. 
Together with laser-patterned microfluidics, the CARES device can be 
attached to the subject’s wrist comfortably and performs multiplexed 
metabolic sensing in situ.

Wearable sensors for long-term continuous 
operation
Several electrochemical sensing strategies based on enzymes29,  
ionophores44, molecularly imprinted polymers30, aptamers45 and anti-
bodies46 are reported, and the majority of existing wearable chemi-
cal sensors are primarily based on amperometric enzymatic sensors 
or potentiometric ISEs as these sensors can offer real-time continu-
ous monitoring with high temporal resolution. However, one main  
bottleneck for the practical applications of these sensors is their limited 
operation lifetime and long-term stability during continuous wearable 
sensing. Large sensor drifts are evident when they are used in body 
fluids, which substantially hinders the long-term continuous usability 
of wearable chemical sensors.

Most wearable enzymatic biosensors are based on Prussian blue 
(PB), which serves as an efficient electron-transfer mediator with a 
low redox potential of around 0 V. However, PB-based biosensors 
suffer from poor stability during long-term use in biofluids because 
PB degrades in neutral and alkaline solutions as the hydroxide ions 
(OH−), a product of H2O2 reduction, can break the Fe–(CN)–Fe bond 
(Supplementary Note 3). To stabilize PB while retaining its catalytic 
activity, we use a PB-analogue nickel hexacyanoferrate (NiHCF) with 
a similar zeolitic crystal structure that is catalytically inactive but 
forms a stabilized solid solution composite, protecting the PB sensor 

interface (Fig. 2a). Additionally, the enzymes were protected in a 
glutaraldehyde-crosslinked bovine serum albumin (BSA) matrix. To 
fabricate enzymatic sensors, gold nanoparticles were electrodeposited 
onto an inkjet-printed inert carbon electrode to provide a high electro-
active area for sensitive electrochemical sensing followed by PB–NiHCF 
deposition. Scanning transmission electron microscopy (STEM) and 
energy dispersive spectroscopy (EDS) analyses (Fig. 2b and Supple-
mentary Fig. 4) indicate that NiHCF forms a thin protective layer on 
PB with an obscure boundary. Our electrochemical characterizations 
confirmed that compared to PB—which suffered from rapid degrada-
tion during electrochemical measurement—and other transition metal 
hexacyanoferrates (PB–CoHCF and PB–CuHCF), PB–NiHCF could with-
stand pH corrosion and maintain the most consistent electrochemical 
catalytic activity (Supplementary Figs. 5–7). This could be attributed to 
two mechanisms (Supplementary Note 3): (1) nickel is inert compared 
with iron and can withstand OH− group corrosion (Supplementary  
Fig. 8), and (2) the Ni ion has a smaller ionic radius than other tran-
sitional metal ions (such as Co and Cu ions), which is better able to 
withstand ion insertion (Supplementary Fig. 9). Both mechanisms 
were further supported with scanning electron microscope charac-
terizations of the electrodes (Supplementary Fig. 10) and inductively 
coupled plasma–mass spectrometry analysis of the dissolved Fe2+ from 
the electrodes (Supplementary Fig. 11) before and after electrochemical 
tests. These results indicated that PB dissolved after tests under differ-
ent pHs and repeated cyclic voltammetry scans, whereas NiHCF did not 
show any substantial degradation and maintained the highest stability 
among the transition metal hexacyanoferrates for PB stabilization.

Highly stable, continuous and selective monitoring of sweat 
glucose, lactate and UA was realized amperometrically, and a lin-
ear response between current output and target concentrations 
was obtained for all three sensors in physiologically relevant con-
centration ranges over a 25 h evaluation period (Fig. 2c). The sensi-
tivities for glucose, lactate and UA sensors were 33.65 nA μM−1 cm−2, 
185.56 nA mM−1 cm−2 and 26.36 nA μM−1 cm−2, respectively. These sen-
sors also showed long-term stability of more than 100 h of continuous 
operation in phosphate-buffered saline (PBS) solutions and untreated 
human sweat samples, which greatly exceeded that obtained with pre-
vious widely adopted wearable sweat sensors (Supplementary Figs. 12 
and 13 and Table 1). Note that as sweat lactate is present in high concen-
trations (up to 60 mM), a further diffusion-limited polyvinyl chloride 
(PVC)/bis(2-ethylhexyl) sebacate (DOS) membrane was introduced on 
top of the enzyme film to achieve a wide linear range while maintaining 
high sensor stability (Supplementary Fig. 14).

Existing wearable ISEs are based on PVC/DOS membranes and 
are plagued with a potential drift of typically ~2 mV per hour over 
time, which is attributed to ionophore leaching and water formation 
below the ion-selective membrane47. To address this issue during 
long-term operation, we adopted another analogous composite mate-
rials design strategy by introducing polystyrene-block-poly (ethylene 
butylene)-block-polystyrene (SEBS) into the PVC system; it shares a 
similar long-chain structure but holds more methyl and phenyl groups 
at the sensor interface to promote hydrophobicity and mechanical 
strength (Fig. 2d). High hydrophobicity suppresses ionophore leaching 
and prevents water layer formation at the interface. To fabricate ISEs, 
electrodes made from inkjet-printed carbon nanoparticles, which 
are inert but have a large surface area, were used without the need to 
deposit further ion-charge transducer materials. Ion-selective mem-
branes based on the PVC–SEBS matrix were drop-casted onto the 
carbon electrode, and the SEBS to PVC ratio was evaluated to identify 
the optimal stability (Fig. 2e, Supplementary Note 4). The optimized 
ISEs obtained prolonged stability of 100 h of continuous operation in 
both standard solutions and human sweat samples, with the potential 
value decaying less than 0.04 mV per hour (Supplementary Figs. 15 and 
16 and Table 2). A logarithmic–linear relationship between the poten-
tiometric output of Na+, K+ and NH4

+ with near-Nernstian sensitivities of 
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58.9, 60.6 and 61.2 mV per decade, respectively, were identified during 
a 25 h prolonged sensor evaluation in physiologically relevant ranges 
(Fig. 2f and Supplementary Fig. 17).

With an analogous composite materials’ approach, our sensors 
demonstrated high reproducibility (Supplementary Fig. 18), selectivity 
(Supplementary Fig. 19) and long-term continuous operation stability 
in both standard solutions and untreated human sweat over several 
days (Supplementary Figs. 12, 13, 15 and 16). Such sensor performance, 
to the best of our knowledge, was among the best in wearable sweat 

sensing (Supplementary Tables 1 and 2). The low-cost, mass-producible 
sensor patch is designed to be disposable after use: the anticipated 
wearable use time for each patch is 24–48 h, and users can easily replace 
the sensor patch. Thus, our sensors can provide a stable response for 
longer than the expected wearable use time. The general material 
strategy demonstrated here, based on electrodes prepared by inkjet 
printing, can be applicable to electrodes manufactured using other 
scalable technologies, including laser engraving and thin-film evapo-
ration (Supplementary Fig. 20). In addition, the sensor preparation 
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a, Mechanism of enzymatic metabolite sensors. b, Cross-sectional STEM and EDS 
images of the PB–NiHCF interface. Scale bar, 100 nm. c, Operational long-term 
stability of enzymatic glucose, lactate and UA sensors in PBS and sweat samples 
for 30 h. d, Mechanism of ISEs. e, SEBS to PVC ratios in regards to sensor stability. 
Insets, contact angle measurements for different SEBS ratios. Data are presented 
as mean ± s.d. (n = 3 sensors). f, Operational long-term stability of ion-selective 
Na+, K+ and NH4

+ sensors in standard solutions and sweat samples for 30 h.  
g,h, Schematic (g) and on-body evaluation (h) of the microfluidic IP module for 
autonomous sweat induction and sampling at rest. Timestamps in h represent 
the period after a 5 min IP session. i, Schematic of the pressure sensor and a 
pulse waveform measured at the wrist. CPI, capacitance of the polyimide; CAir, 

capacitance of the airgap. j, Pressure versus capacitance (C) characterizations 
of the pressure sensor, where C0 is flat-state C. Data are presented as mean ± s.d. 
(n = 3 sensors). k, Repetitive response of the pressure sensor on small pressure 
loads. Inset, a goose feather placed on a sensor. Scale bar, 1 cm. l, Response of the 
temperature (T) sensor in the physiological temperature range. m, Impedance 
of the skin–electrode interface measured with inkjet-printed Ag electrodes and 
commercial electrodes for GSR monitoring. n, Performance of encapsulated 
pulse, T and GSR sensors under environmental humidity and body sweat test. 
All error bars represent the s.d. from three sensors. AuNPs, gold nanoparticles; 
carbagel, carbachol hydrogel; GA, glutaraldehyde; Glu, glucose; Lac, lactate; ISM, 
ion-selective membrane; R, resistance.
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approach here is not limited to the six sensors we proposed in this 
study; it can serve as a universal and readily reconfigurable method 
for other enzymatic and ionophore-based biosensors towards a broad 
range of practical applications.

To realize practical molecular biomarker monitoring without the 
need for vigorous exercise, miniaturized IP electrodes coated with car-
bachol hydrogels were incorporated into the CARES for autonomous, 
local sweat induction (Fig. 2g). Sweat can be continuously secreted 
from the surrounding glands over a prolonged period of time because 
of the nicotinic effects of carbachol (transdermally delivered for 5 min 
by means of a 50 μA current). Efficient sampling was obtained through 
custom-developed microfluidics for real-time bioanalysis with high 
temporal resolution (Fig. 2h and Supplementary Figs. 21 and 22 and 
Supplementary Video 1).

In addition to chemical sensors, the CARES also contains several 
physical sensors to monitor stress-related vital signs. We placed a 
capacitive pressure sensor above the radial artery for pulse waveform 
monitoring (Fig. 2i). Because of the soft PDMS-engraved airgap, the 
pressure sensor is highly sensitive to soft pressure loads (such as a 
feather), with an impressive sensitivity of 113.1% kPa−1 in the range of 0 
to 500 Pa (Fig. 2j,k). The pressure sensor also displays highly robust per-
formance and mechanical stability during a repetitive pressure-loading 
test involving 5,000 cycles, mimicking daily use on the skin (Supple-
mentary Fig. 23). A printed resistive temperature sensor was integrated 
into the CARES for skin temperature recording in situ, with a sensitivity 
of around 0.115% °C−1 in physiological temperature ranges between 25 
and 50 °C (Fig. 2l and Supplementary Fig. 24). Considering that temper-
ature has a strong influence on enzymatic activities, the temperature 
information is used for calibrating the response of the three enzymatic 
biosensors to achieve highly accurate in situ metabolic analysis (Sup-
plementary Figs. 25 and 26). Note that other environmental factors 
such as humidity showed minimal influence on the performance of 
our chemical sensors (Supplementary Fig. 27). Additionally, a pair of 
printed Ag electrodes was used as a GSR sensor, which demonstrated 
high conductivity compared with commercial gel electrodes (Fig. 2m). 
Because of the ultrathin flexible PI substrate and strong interfacial 
strength enabled by the medical adhesive, the CARES showed excellent 
skin contact and mechanical resilience against undesirable physical 
deformations during continuous operations (Supplementary Figs. 28 
and 29). The impermeable PI packaging also eliminated the influence 
of humidity from environmental surroundings and sweat (Fig. 2n).

Continuous daily monitoring across various 
activities
Because of the excellent long-term stability of wearable sweat biosen-
sors, the CARES enables long-term real-time continuous monitoring of 
physicochemical biomarkers. As illustrated in Fig. 3a, the CARES can 
successfully record dynamic changes in metabolites and vital signs 
over 24 h of activity involving casual and vigorous exercise, dietary 
intake, lab work, relaxing entertainment and sleep. Glucose and UA 
levels spiked after food intake, indicating rapidly increased metabolic 
activities. During vigorous exercise, substantial increases in vascular 
activity and skin electrolyte/conductivity were observed, and stable 
output for both metabolites and vital signs was detected during sleep at 
night. Such powerful capabilities of continuous multimodal monitoring 
will enable various personalized healthcare and human performance 
monitoring applications.

ML approach for stress evaluation
To evaluate the use of the CARES for stress response monitoring, con-
trolled experiments were performed on ten healthy subjects using three 
different physiological and psychological stressors: a cold pressor test 
(CPT), a virtual reality (VR) challenge and intense exercise (Supplemen-
tary Note 5). The dynamic profiles of all individual sensors integrated in 
the CARES were collected during each study, as illustrated in Fig. 3b–d 

and Supplementary Figs. 30–33. State anxiety levels, as measured by 
the State-Trait Anxiety Inventory Form Y (STAI-Y) questionnaire, with 
scores ranging between 10 and 40 points (10 indicating little to no 
anxiety)48, were the psychological stress response measure for data 
training (Supplementary Note 6). The questionnaire was administered 
before and after each stressor to quantify the induced anxiety levels in 
a subject (Supplementary Fig. 34).

For each experiment, on-body chemical and physical data showed 
notable variations in response to each stressor. During the CPT experi-
ment, subjects immersed one hand in ice water for 3 min. A natural reac-
tion of vasoconstriction occurred, and the blood vessel constricted in 
response to cold temperatures49. As a result, immediate physiological 
responses including altered pulse waveform and elevated GSR were 
observed, consistent with previous reports on the variations of physi-
ological signals with cold-stimulated stress response50,51. In addition, 
delayed mild fluctuations in metabolite concentrations of glucose, 
lactate and UA in some subjects were also observed. During the VR 
test, subjects wore an Oculus VR headset to play a rhythm game (Beat 
Saber) while the gaming screen was mirrored to a computer monitor 
with an audience, resulting in both physiological and social–evaluative 
psychological stress. We observed substantial differences in the pulse 
waveform and GSR amplitude during and after the stress stimulus, 
along with elevated glucose, lactate and UA levels minutes later39–41. 
During vigorous exercise, profound activation of the HPA axis led to 
dramatic changes of all physiological signals as well as sweat metabo-
lites and electrolytes (for example, Na+), in agreement with previous 
studies on exercise-induced stress response42,52. These results indicate 
that the CARES can reliably monitor stress-induced biological signals.

To quantify the stress-response-related features, data-driven stress 
and anxiety evaluations were performed after each experiment was 
complete: an ML pipeline was developed to extract features and decon-
volute connections between physicochemical information and stressor 
types and state anxiety levels (Fig. 4a and Supplementary Note 7).  
We undertook this challenge using three separate ML analyses: stress 
detection versus relaxation, stressor classification and anxiety level 
evaluation, where we trained and tested each model across three exper-
iments (VR, CPT, exercise) with all ten subjects for a total of 60,000 s of 
physiological CARES signals. All signals were calibrated and normalized 
to ensure that the features extracted after data preprocessing were 
stable against patch variations and any moderate motion artifacts 
(Supplementary Figs. 35–37, Note 8 and Table 3). Feature extraction 
was validated before ML analysis by projecting the multidimensional 
feature space into 2D space by means of t-distributed stochastic neigh-
bour embedding53, where data from stress/relaxation naturally formed 
distinctive clusters, indicating the discriminative power of the features 
(Fig. 4b, Supplementary Fig. 38a).

Different ML models were evaluated, and the trained boosting 
decision tree model Extreme Gradient Boosting (XGBoost) outper-
formed typical ML models, including linear and radial basis function 
support vector machines (SVMs), logistic and ridge regression and 
conventional decision trees (Fig. 4c). Combined with features extracted 
from both physiological and metabolic data, it was found that our 
XGBoost ML model could yield much higher accuracy, with stress 
response classification accuracy of 99.2% for stress/relaxation detec-
tion (Supplementary Fig. 38) and an accuracy of more than 98.0% 
for stressor classification, which to the best of our knowledge is the 
highest accuracy reported for stressor classification (Fig. 4d and  
Supplementary Table 4). Note that differentiating stressors has high 
importance, as each stressor carries varying physiological and psycho-
logical influences and could act as a risk factor for coping responses and 
cardiovascular diseases54–56. Distinguishing types of stressors has been 
recognized as a necessary condition for understanding the complex 
interrelationships among distinct stress experiences, as well as the 
collective effects of stress on mental health57 (Supplementary Note 5). 
Moreover, the XGBoost ML model resulted in highly consistent overall 
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accuracies of more than 99.3% across different individuals (Fig. 4e and 
Supplementary Note 9).

The Pearson correlation coefficients between all sensors in the 
CARES show the interrelatedness between physiological and chemical 
biomarkers (Fig. 4f). The relatively homogeneous correlation shows 
the high independence of the extracted features. To evaluate each 
physicochemical sensor’s contribution to the model, feature impor-
tance of each biomarker towards each stressor was evaluated using 
a Shapley additive explanation (SHAP) (Fig. 4g and Supplementary 
Fig. 39 and Note 9). Through SHAP analysis, the feature importance 
of GSR, pulse, glucose and Na+ indicates that these biomarkers play an 
important role in stressor classification. These results support the fact 
that stress responses involve participants’ vascular dynamics, neural 
stimulation and metabolism.

On the basis of the classification results, we expanded our analysis 
to the evaluation of state anxiety levels. We adopted a similar XGBoost 

regression model and could predict state anxiety levels with a high 
confidence level of 98.7% and 98.1% coefficient of determination of 
scores from the STAI-Y (with a s.d. of 4 points or less48) (Fig. 4h and 
Supplementary Note 6). The relevance of each feature was evaluated 
using SHAP analysis as well (Fig. 4i,j). Through SHAP analysis, it was 
determined that GSR, pulse, Na+, K+ and lactate played the most impor-
tant roles in predicting state anxiety levels. Note that SHAP values show 
the relative importance of each feature in the ML model. Addition-
ally, given the intrinsic limitations of questionnaires, which can only 
characterize state anxiety levels in a given time period rather than 
continuous dynamic stress change, we analysed the stress response 
event as a whole to mimic questionnaire functionalities (Supplemen-
tary Note 3). In this circumstance, features were extracted from the 
stress region by taking mean signal changes from the moving average 
(MA) of sensor data rather than segmented at each timepoint, and a 
simple linear regression model was trained with fewer features selected 
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Fig. 3 | On-body evaluation of the CARES in daily activities and under various 
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water (b); a VR challenge, during which the subject was asked to play a VR rhythm 
game (c); and a cycling exercise test, during which the subject was asked to 
perform a maximum-load cycling challenge on a stationary exercise bike (d). HR, 
heart rate; bpm, beats per minute.
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to correspond to questionnaire scores and prevent overfitting (Sup-
plementary Fig. 40). With the reduced size of the dataset and analysing 
the overall sensor responses in the CARES, we performed a brute-force 
feature selection in each biomarker and found that combined phys-
icochemical features outperformed those of physical and chemical  
sensors alone.

To realize convenient data collection for real-life applications, 
in addition to using flexible cables connecting the CARES patch with 
laboratory instruments (Supplementary Fig. 41), we further designed 
a fully integrated wearable CARES system with a flexible printed circuit 
board for multiplexed and multimodal signal processing as well as 
Bluetooth wireless communication (Supplementary Figs. 42–44). 
The wireless system was successfully used for on-body tests and vali-
dation of our CARES systems in the laboratory setting (Supplemen-
tary Fig. 45) and in real-life daily casual activities (Supplementary  
Fig. 46 and Supplementary Video 2). Our ML models obtained from the 
laboratory tests were able to accurately classify the types of stressors 
and state anxiety levels on the basis of the wirelessly collected sen-
sor data in the laboratory (Supplementary Fig. 47) as well as real-life 
settings (Supplementary Fig. 48). We anticipate that for large-scale 
human trials, the CARES will surpass the current gold standards for 
stress response quantification and provide a highly robust stress 
response monitoring tool that is not reliant on subjective reporting 
with its potential for errors. In this regard, we envision a high potential 
for wearable multimodal physicochemical monitoring of dynamic  
stress response.

Conclusions
We have reported a CARES platform that performs multiplexed  
monitoring of key physiological signals, metabolites and electrolytes 
simultaneously during a prolonged operation. By applying analogous 
composite materials for stabilizing and conserving sensor interfaces, 
we developed a general approach to prepare stable and sensitive bio-
chemical sensors including both enzymatic and ISE sensors, which 
offer long-term stability of more than 100 h of continuous operation 
with negligible sensor degradation. Continuous 24 h monitoring of 
prolonged daily activities was also obtained. Real-time multimodal 
data for stress responses were generated from three different stressors 
using both biochemical and physiological signals. With the enhanced 
reliability of sensor readings, we showed that a state of stress versus 
relaxation, and state anxiety as a key psychological response to stress, 
can be classified and predicted through multimodal health profiles 
at the metabolic level, with the ability to detect and classify stressor 
types with an accuracy of more than 98.0% and evaluate state anxiety 
levels at a confidence level of 98.7%. By capturing a broader range of 
signals through more integrated biosensors, a more complete meta-
bolic profile could be achieved for next-generation healthcare and 
human performance monitoring. Our CARES could be of use in the 
development of numerous practical wearable applications including 
intelligent healthcare and personalized medicine.

Methods
Materials
SEBS (Tuftec) was provided by the Asahi Kasei Corporation. UA, sodium 
tetraphenylborate and glutaraldehyde (25% aqueous solution) were 
purchased from Alfa Aesar. Agarose, carbachol, BSA, gold chloride 
trihydrate, hydrochloric acid, iron(III) chloride, potassium ferricya-
nide (III), potassium ferrocyanide (IV), PVC, polyvinyl butyral (PVB), 
DOS, 3,4-ethylenedioxythiophene, poly(sodium 4-styrenesulfonate), 
aniline, l-lactic acid, sodium ionophore X, sodium tetrakis[3,5-bis(trif
luoromethyl) phenyl] borate, valinomycin, nonactin, tetrahydrofuran 
(THF), toluene, glucose oxidase from Aspergillus niger (216 U mg−1) 
and uricase from Bacillus fastidiosus (15.6 U mg−1) were purchased 
from Sigma-Aldrich. Methanol, ethanol, sodium chloride, potassium 
chloride, nickel chloride, urea, l-ascorbic acid, dextrose (d-glucose) 

anhydrous and PBS were purchased from Thermo Fisher Scientific.  
Lactate oxidase (106 U mg−1) was purchased from Toyobo Co. Medical  
tapes (M-tapes) were purchased from 3M (468 MP). Polyethylene  
terephthalate (PET) films (12 μm thick) were purchased from 
McMaster-Carr. PI (2611) was purchased from HD MicroSystems, 
Inc. PDMS (SYLGARD 184) was purchased from Dow Corning. PI film 
(12.5 μm) was purchased from DuPont. STAI questionnaire license was 
purchased from Mind Garden, Inc.

Fabrication and assembly of the CARES device
CARES patch fabrication. The fabrication process of the CARES is  
illustrated in Supplementary Figs. 2 and 3. PI was spin-coated on the sili-
con oxide wafer at a speed of 5,000 revolutions per minute (r.p.m.) for 
30 s and then cured at 350 °C for 1 h with a ramping speed of 4 °C min−1. 
The resulting PI substrate thickness is about 4 μm. For mass fabrica-
tion, 12.5 μm PI film was used for large-area patterning demonstration. 
The CARES patch was then patterned with sequential printing of silver 
(interconnects and pin connections, reference electrode, pulse sensor 
and GSR sensor), carbon (IP electrodes, counter electrode, temperature 
sensor, working electrodes for biosensors) and PI (encapsulation) 
using an inkjet printer (DMP-2850, Fujifilm). The CARES patch was 
then annealed at 250 °C for 1 h. A 1:12 mixture of curing agent to PDMS 
elastomer was prepared and stirred thoroughly for 10 min, after which 
the solution was spin-coated at a speed of 800 r.p.m. for 30 s directly 
onto the inkjet-printed bottom layer of the CARES patch, followed by 
curing at 60 °C for 1 h. The resulting PDMS thickness is about 120 μm. 
Both the bottom and top layers of the CARES patch were then laser 
patterned to define outlines and sweat outlets using a 50 W CO2 laser 
cutter (Universal Laser System) with power 25%, speed 50% and pulse 
per inch (PPI) 1,000 in vector mode. The bottom layer was further cut 
to define IP reservoirs, sweat reservoirs and airgaps without cutting 
through the PI substrate, with optimized parameters of power 2%, 
speed 20%, PPI 500 in vector mode, twice. The PDMS layer was cleaned 
with ethanol and deionized water to remove debris, followed by 30 s 
of O2 plasma surface treatment using Plasma Etch PE-25 (10 cm³ min−1 
O2, 100 W, 150 mTorr) to clean its surface and promote surface adhe-
sion. The entire CARES patch was then assembled by dry transferring 
the top layer onto the bottom layer using a PDMS stamp. Biosensors 
were prepared before microfluidics integration. Note that the sweat 
reservoir was predefined during fabrication of the 120-μm-thick PDMS 
middle layer of the CARES patch, which has dimensions of 17.15 mm2 
and therefore a reservoir volume of 2.06 μl. The small volume allows 
a fast refreshing rate and enables rapid detection of dynamic changes 
during human performance.

Microfluidics fabrication. The microfluidics layers were fabricated 
with a laser cutter, layer by layer, by patterning double-sided M-tape, 
PET and PDMS with IP gel reservoirs, gel electrolytes reservoirs, sweat 
inlets, flowing channels and outlets. The optimized laser parameters 
to cut M-tape were set to power 62%, speed 100%, PPI 500 in vector 
mode, twice; and the optimized parameters to cut PDMS were power 
2%, speed 20%, PPI 500 in vector mode, twice, to minimize debris. 
The IP gel and gel electrolytes reservoirs were patterned by cutting 
through all microfluidics layers to define the gel area and establish a gel 
connection with the skin. The first microfluidics layer is a PDMS-based 
sweat channel layer, which was spin-coated on a PET petri dish and 
cured at 60 °C for 1 h. The PDMS layer was treated with O2 plasma 
before laminating a thin layer of 12 μm PET, followed by laser-defining 
sweat inlets. Then the third layer of double-sided M-tape was pat-
terned and aligned onto PET, which contacts the skin and forms the 
sweat accumulation layer. After attaching the microfluidics module 
to the CARES patch, the system was further encapsulated with PDMS 
backings to avoid potential sweat contact and leakage. The device 
was connected with a flexible printed circuit connector for further  
characterization.
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IP gel fabrication. Both the anode and cathode of IP gel were prepared 
by mixing agarose (3% w/w) into deionized water and then heated to 
250 °C under constant stirring until the solution became homogenous. 
The solution was then cooled to 165 °C, during which 1% w/w carbachol 
and 1% w/w NaCl were added to the anode and cathode solutions, 
respectively, and mixed thoroughly. The solution was further cooled 
and poured into the IP gel reservoirs: 41.95 mm2 for the anode and 
28.19 mm2 for the cathode, respectively. Together with the IP gel, elec-
trolyte gel (SignaGel, Parker Laboratories, Inc.) was casted onto the GSR 
electrodes before the CARES device was placed on human subjects.

Biosensor preparation and characterization
Enzymatic sensor preparation. An electrochemical workstation (CHI 
760E, CH Instruments) was used to prepare enzymatic biosensors. 
Pulsed voltammetry from −0.9 to 0.9 V (3,000 cycles total) in 50 mM 
HAuCl4 was used to deposit gold nanoparticles on the carbon electrode 
at a signal frequency of 50 Hz, to increase surface area and enhance 
sensitivity. A thin PB transducer layer was deposited by applying cyclic 
voltammetry for two cycles for glucose and UA and four cycles for lac-
tate (from −0.2 to 0.6 V with a scan rate of 50 mV s−1) in a fresh solution 
consisting of 2.5 mM FeCl3, 2.5 mM K3Fe(CN)6, 100 mM KCl and 100 mM 
HCl. The electrodes were then deposited with a NiHCF protection layer 
by applying cyclic voltammetry for 50 cycles (from 0 to 0.8 V with a 
scan rate of 100 mV s−1) in a fresh solution containing 0.5 mM NiCl2, 
0.5 mM K3Fe(CN)6, 100 mM KCl and 100 mM HCl. The electrodes were 
then dried before drop-casting with an enzyme cocktail. For all three 
amperometric enzymatic sensors, the enzyme cocktails were prepared 
as follows: BSA (1% w/w), 2.5% glutaraldehyde (2% v/v) and 10 mg ml−1 
enzyme (4% v/v) were mixed in 1 ml PBS. Then 0.5 μl of enzyme cock-
tail was drop-casted onto each enzymatic sensor electrode surface 
and dried overnight at 4 °C. For the lactate sensor, a limit-diffusion 
membrane was further drop-casted by applying 0.5 μl of a solution 
containing 17 mg PVC and 65 mg DOS in 660 μl THF.

Reference electrode preparation. To prepare the shared reference 
electrode, 10 μl of 0.1 M FeCl3 solution was drop-casted onto the Ag  
surface for 20 s and rinsed with deionized water. Then 1.5 μl PVB reference  
cocktail was applied on the Ag/AgCl surface by dissolving 79.1 mg PVB 
and 50 mg NaCl into 1 ml methanol and left to dry overnight.

ISE sensor preparation. The Na+ selective cocktail was prepared as 
follows: 1 mg Na ionophore X, 0.55 mg sodium tetrakis[3,5-bis(triflu
oromethyl) phenyl] borate, 30 mg PVC, 30 mg SEBS and 65 mg DOS 
were dissolved in 660 μl THF. The K+ selective cocktail was prepared as 
follows: 2 mg valinomycin, 0.5 mg sodium tetraphenylborate, 30 mg 
PVC, 25 mg SEBS and 70 mg DOS were dissolved in 350 μl THF. The NH4

+ 
selective cocktail was prepared as follows: 1 mg nonactin, 30 mg PVC, 
30 mg SEBS and 65 mg DOS were dissolved in 660 μl THF. The inkjet 
carbon electrode was activated in 0.5 M HCl with cyclic voltammetry 
scans of ten cycles (−0.1 to 0.9 V with a scan rate of 100 mV s−1). The 
electrodes were baked in a vacuum oven at 120 °C for 1 h to remove 
moisture. Then 2 μl Na+ selective cocktail, 2 μl K+ selective cocktail and 
2 μl NH4

+ selective cocktail were drop-casted onto the carbon electrode 
and dried overnight.

In vitro sensor characterization. To obtain the best performance 
for long-term continuous measurements, all sensors were placed in a 
buffered solution containing 100 μM glucose, 5 mM lactate, 25 μM UA, 
40 mM NaCl, 8 mM KCl and 2 mM NH4Cl for 30 min to minimize poten-
tial drift. All the in vitro biosensor characterizations were performed 
with cyclic voltammetry and amperometry through a multichannel 
electrochemical workstation (CHI 1430, CH Instruments). For in vitro 
enzymatic sensor characterizations, analyte solutions were prepared 
in PBS, with glucose ranging from 0 to 100 μM, lactate ranging from 
0 to 20 mM and UA ranging from 0 to 100 μM. For in vitro ISE sensor 

characterizations, analyte solutions were prepared in deionized water, 
with NaCl ranging from 10 to 160 mM, KCl ranging from 2 to 32 mM 
and NH4Cl ranging from 0.5 to 8 mM. The enzymatic sensors were 
characterized chronoamperometrically at a potential of 0 V, and the 
ISE sensors were characterized using open circuit potential measure-
ment. Both potentiometric and chronoamperometric responses were 
set to a 1 s sampling interval, except for long-term monitoring, where 
the sampling interval was set to 10 s to minimize data overload. To test 
the pH influence on PB–NiHCF-based enzymatic biosensors, McIlvaine 
buffer solutions were prepared and calibrated containing 0–100 μM 
H2O2. Temperature influence characterizations were carried out on a 
ceramic hot plate (Thermo Fisher Scientific).

To characterize the stability of the PB and PB–NiHCF electrodes, 
dissolved Fe2+ concentrations were determined by inductively coupled 
plasma–mass spectrometry using an Agilent 8800. The sample intro-
duction system consisted of a micromist nebulizer, Scott-type spray 
chamber and fixed-injector quartz torch. A guard electrode was used, 
and the plasma was operated at 1,500 W. All elements were measured 
in Helium tandem mass spectrometry mode.

Materials characterization
The morphology of materials was characterized by field-emission 
scanning electron microscopy (Nova 600). Cross-sectional lamella 
was prepared by standard focus ion beam cutting (Nova 600). The 
STEM characterizations and EDS analyses were performed using a JEOL 
JEM-ARM300CF S/STEM system (300 keV).

Physical sensor characterization
For in vitro temperature and GSR sensor characterizations, an 
amperometric method was used with an applied voltage of 1 V using a 
dual-channel electrochemical workstation (CHI 760E).

For in vitro pulse sensor characterizations, a parameter analyser 
(Keithley 4200A-SCS) was applied to record the fast-changing capaci-
tive signals at a sampling frequency of around 137 Hz. The influence of 
mechanical deformation on physical sensor performance was inves-
tigated through pressing-releasing for 5,000 cycles using a Mark-10 
force gauge. The influence of humidity was investigated by immers-
ing the subject hand with the CARES in a customized glove box with 
a humidity gauge.

Microfluidics evaluation
On-body flow tests were conducted to evaluate the sweat flow of 
dual-reservoir designs. An assembled microfluidic patch predepos-
ited with black dye in the sweat reservoir was attached to a subject’s 
forearm, followed by in situ sweat induction using IP .

Experimental flow tests were also conducted to evaluate the 
dynamic response of sensors using a syringe pump (78–01001, Thermo 
Fisher Scientific). Different fluids were injected into the pre-assembled 
CARES device with a varying flow rate of 1–4 μl min−1 (Supplementary 
Fig. 22).

On-body evaluation of CARES for long-term continuous 
monitoring
Subject recruitment. The validation and evaluation of the CARES 
device were performed on healthy human subjects in compliance 
with the protocols (19–0892 and 19–0895) approved by the Institu-
tional Review Board at the California Institute of Technology (Caltech). 
Participating subjects were recruited from the Caltech campus and 
neighbouring communities through advertisement by posted notices, 
word of mouth and email distribution. Ten healthy subjects (eight 
males and two females, age range 23–38 years) were included in this 
study. The participants were healthy, without anxiety nor depression 
issues. All subjects gave written informed consent before participa-
tion in the study. The study was fully voluntary, and no compensation  
was given.
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On-body protocols. The CARES was mounted on the subject’s wrist 
after skin cleaning with alcohol wipes. Participants were requested 
to refrain from meals, alcohol, caffeine and exercise within 3 h before 
the tests. The CARES was sealed in PDMS, leaving output pins exposed 
with an M-tape backing as support for wire connections. We further 
designed a plug-and-play input–output to connect with the flexible 
flat cable (Supplementary Fig. 41). A 50 μA current was implemented 
on both pairs of IP electrodes for 5 min simultaneously for sweat induc-
tion. The data were collected with an eight-channel multiplexer (CHI 
Instrument 1430) and a Keithley 4200A-SCS parameter analyser. A 
wireless wearable CARES system was also developed for convenient 
data collection in real-life settings.

Long-term multimodal sensor evaluation during daily activities. 
Continuous monitoring of 24 h of physiological and biochemical sig-
nals was recorded using the CARES device. Five-minute periodical IP 
sweat induction was performed at 7 a.m., 9:30 a.m., 12:30 p.m., 4 p.m., 
7 p.m., 11 p.m., 1:30 a.m. and 4:30 a.m. The physiological data were 
collected continuously, and data from the biosensors were collected 
10 min after IP.

Questionnaire for state anxiety evaluation. STAI-Y is a self-evaluation 
questionnaire that consists of two forms (Y-1 and Y-2) to measure state 
and trait anxiety, respectively. It has a high internal consistency coef-
ficient of 0.91–0.93 for college students and working adults48. In our 
study, we used short form Y-1, which measures state anxiety, as a key 
psychological response to stress. This measure can be proctored during 
real-time experiments without major intervention during the stress 
event. One challenge for quantifying stress is the subjective nature of 
the questionnaire, which inherently leads to small fluctuations of vari-
ous stress points, with a s.d. of more than four points in most cases48. In 
our study, we take ±2 points as the confidence interval buffer for state 
anxiety level evaluation.

Stressor 1: CPT. The participants were asked to wear the CARES and 
relax for 10 min after IP sweat induction, during which no sensor signals 
were collected. After the relaxing stage, the physical sensors and bio-
sensors simultaneously started monitoring baseline vital and molecu-
lar data. The STAI-Y questionnaire was administered to assess state 
anxiety levels during this relaxed baseline state. Subjects were asked to 
relaxation for another 1,000 s, after which a 3 min CPT was conducted. 
Subjects were asked to immerse their other hand without the CARES 
device up to the forearm into a tank containing iced water (0 °C) for 
3 min. Another STAI-Y questionnaire was then given to evaluate state 
anxiety levels, and subjects were asked to finish within 20 s. Afterwards, 
subjects were instructed to remove the hand from the iced water and 
recover in ambient air. Continuous monitoring of multimodal physi-
ological and biochemical data was performed throughout the stress 
challenge and recovery stage until 1,000 s after the CPT was finished. 
The subjects were seated during the whole procedure.

Stressor 2: VR test. The sensor data recording process was the same 
as the aforementioned, except that subjects were asked to play a VR 
game (Beat Saber) while wearing a VR headset (Oculus Quest 2, Meta). 
The game was set to one-handed mode with expert difficulty, and the 
game screen was projected onto a monitor. Subjects were strongly 
encouraged verbally and asked to compete with other participants’ 
record scores so that mixed physical and psychological stress could 
be stimulated. The STAI-Y questionnaire was used to assess state anxi-
ety levels.

Stressor 3: exercise. For exercise-induced stress, the sensor data 
recording process was the same as the aforementioned. Subjects per-
formed maximum-load cycling (>70 r.p.m.) on a stationary exercise 
bike (Kettler Axos Cycle M-LA) for 3 min or until fatigue, during which 

strong verbal encouragement was given. The STAI-Y questionnaire was 
used to assess state anxiety levels.

Data collection in real-life activities. Subjects was asked to per-
form indoor activities, including relaxation on the phone, playing a 
long-term VR game (Superhot VR) while wearing a VR headset and 
reading journal papers. Subjects then performed outdoor activities, 
including running and walking recovery. The STAI-Y questionnaire was 
used to assess state anxiety levels during each activity.

ML pipeline for stress assessment
Data preprocessing and feature extraction. Although all the multi-
modal sensor signals were monitored in real time, data preprocessing 
was performed asynchronously to extract features. A pulse feature 
extraction algorithm was developed because of its unique peripheral 
pulse sampling frequency of T = 0.007 s. To match the other sensors’ 
sampling frequency of T = 1 s, each pulse waveform was autonomously 
analysed through our pulse analysis algorithm, and a floor function was 
used afterwards to select the closest pulse feature within each time 
interval. Signals from the biochemical sensors were manually shifted 
by 300 s to align with physical signals due to natural sweat delay; heart 
rate data in figure plots were extracted from the pulse features and 
smoothed by the MA of 100 s to show the trends more clearly. The time 
stamp when each subject expressed stress was recorded, and manual 
data labelling was performed. To minimize variations from intersubject 
responses, all features were normalized before the ML pipeline with 
regard to each subject during each stress test, to generalize the model 
among the population. After data collection and analysis, the training 
and testing datasets were shuffled and divided 8:2, respectively, and 
data points were randomly selected using an equal representation of 
each class. The ML model was developed to link biological and chemical 
features to stress detection, stress types and state anxiety levels from 
questionnaire scores.

Model selection for stress classification. All training models were 
built using Python (v.3.8) based on the data collected from ten sub-
jects facing three different stressors, with a set of 60,000 s of CARES 
recordings. Segmentation of the sensor signals was done using a sliding 
window with a sampling interval of 1 s, given each stress type represen-
tation. Several ML models were evaluated according to their precision–
recall curves and F1-scores, including linear and radial basis function 
SVMs, logistic and ridge regression, conventional decision trees and the 
gradient-boosted decision tree XGBoost model. The trained XGBoost 
model outperformed typical ML models for both stress detection and 
stress type classification.

Model selection for stress regression. The ML algorithms were devel-
oped on a password-protected local computer with individual graphics 
processing unit module Nvidia 3080. The training models were built as 
mentioned earlier, except that the kernel was changed to a regressor 
instead of a classifier. For overall stress level evaluations, on the other 
hand, features were extracted from stress regions by taking average 
signal changes from the MA of sensors rather than segmented at each 
timepoint, and simpler ML models such as linear regression and SVM 
were evaluated because of the reduced size of the datasets, to prevent 
overfitting. A brute-force examination of features was performed to 
compare the contributions of physicochemical biomarkers.

Reporting summary
Further information on the research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The multimodal data collected by the CARES from human subjects 
is available at https://github.com/CARES-eskin/StressData. All other 
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data that support the findings of this study are available from the  
corresponding author on reasonable request.

References
1. Kivimäki, M., Bartolomucci, A. & Kawachi, I. The multiple roles of 

life stress in metabolic disorders. Nat. Rev. Endocrinol. 19, 10–27 
(2022).

2. Schneiderman, N., Ironson, G. & Siegel, S. D. Stress and health: 
psychological, behavioral, and biological determinants. Annu. 
Rev. Clin. Psychol. 1, 607–628 (2005).

3. Kumar, A., Rinwa, P., Kaur, G. & Machawal, L. Stress: neurobiology, 
consequences and management. J. Pharm. Bioallied Sci. 5, 91–97 
(2013).

4. Podsakoff, N. P., Freiburger, K. J., Podsakoff, P. M. & Rosen, C. 
C. Laying the foundation for the challenge–hindrance stressor 
framework 2.0. Annu. Rev. Organ. Psychol. Organ. Behav. 10, 
165–199 (2023).

5. Pfefferbaum, B. & North, C. S. Mental health and the COVID-19 
pandemic. N. Engl. J. Med. 383, 510–512 (2020).

6. Santomauro, D. F. et al. Global prevalence and burden of 
depressive and anxiety disorders in 204 countries and territories 
in 2020 due to the COVID-19 pandemic. Lancet 398, 1700–1712 
(2021).

7. Gutshall, C. L., Hampton, D. P., Sebetan, I. M., Stein, P. C. & 
Broxtermann, T. J. The effects of occupational stress on cognitive 
performance in police officers. Police Pract. Res. 18, 463–477 
(2017).

8. Tomporowski, P. D. Effects of acute bouts of exercise on cognition. 
Acta Psychol. 112, 297–324 (2003).

9. Martin, K. et al. The impact of environmental stress on cognitive 
performance: a systematic review. Hum. Factors 61, 1205–1246 
(2019).

10. Robinson, S. J., Leach, J., Owen-Lynch, P. J. & Sünram-Lea, S. 
I. Stress reactivity and cognitive performance in a simulated 
firefighting emergency. Aviat. Space Environ. Med. 84, 592–599 
(2013).

11. Haines, M. M., Stansfeld, S. A., Job, R. F. S., Berglund, B. & Head, J. 
Chronic aircraft noise exposure, stress responses, mental health 
and cognitive performance in school children. Psychol. Med. 31, 
265–277 (2001).

12. Kulshreshtha, A. et al. Association of stress with cognitive 
function among older black and white US adults. JAMA Netw. 
Open 6, e231860 (2023).

13. Epel, E. S. et al. More than a feeling: a unified view of stress 
measurement for population science. Front. Neuroendocrinol. 49, 
146–169 (2018).

14. Thapar, A., Eyre, O., Patel, V. & Brent, D. Depression in young 
people. Lancet 400, 617–631 (2022).

15. Topol, E. Deep Medicine: How Artificial Intelligence Can Make 
Healthcare Human Again (Basic Books, 2019).

16. Herrman, H. et al. Time for united action on depression: a Lancet–
World Psychiatric Association Commission. Lancet 399, 957–1022 
(2022).

17. Drew, D. A. et al. Rapid implementation of mobile technology for 
real-time epidemiology of COVID-19. Science 368, 1362–1367 
(2020).

18. Charmandari, E., Tsigos, C. & Chrousos, G. Endocrinology of the 
stress response. Annu. Rev. Physiol. 67, 259–284 (2005).

19. Dolan, R. J. Emotion, cognition, and behavior. Science 298, 
1191–1194 (2002).

20. Harker, M. Psychological sweating: a systematic review focused 
on aetiology and cutaneous response. Skin Pharmacol. Physiol. 
26, 92–100 (2013).

21. Axelrod, J. & Reisine, T. D. Stress hormones: their interaction and 
regulation. Science 224, 452–459 (1984).

22. Acosta, J. N., Falcone, G. J., Rajpurkar, P. & Topol, E. J. Multimodal 
biomedical AI. Nat. Med. 28, 1773–1784 (2022).

23. Buergel, T. et al. Metabolomic profiles predict individual 
multidisease outcomes. Nat. Med. 28, 2309–2320 (2022).

24. Ates, H. C. et al. End-to-end design of wearable sensors. Nat. Rev. 
Mater. 7, 887–907 (2022).

25. Wang, C. et al. Bioadhesive ultrasound for long-term continuous 
imaging of diverse organs. Science 377, 517–523 (2022).

26. Kim, D.-H. et al. Epidermal electronics. Science 333, 838–843 
(2011).

27. Xu, C., Yang, Y. & Gao, W. Skin-interfaced sensors in digital 
medicine: from materials to applications. Matter 2, 1414–1445 
(2020).

28. Niu, S. et al. A wireless body area sensor network based on 
stretchable passive tags. Nat. Electron. 2, 361–368 (2019).

29. Gao, W. et al. Fully integrated wearable sensor arrays for 
multiplexed in situ perspiration analysis. Nature 529, 509–514 
(2016).

30. Wang, M. et al. A wearable electrochemical biosensor for the 
monitoring of metabolites and nutrients. Nat. Biomed. Eng. 6, 
1225–1235 (2022).

31. Kim, J., Campbell, A. S., de Ávila, B. E.-F. & Wang, J. Wearable 
biosensors for healthcare monitoring. Nat. Biotechnol. 37, 
389–406 (2019).

32. Ray, T. R. et al. Bio-integrated wearable systems: a comprehensive 
review. Chem. Rev. 119, 5461–5533 (2019).

33. Chesnut, M. et al. Stress markers for mental states and biotypes 
of depression and anxiety: a scoping review and preliminary 
illustrative analysis. Chronic Stress 5, 24705470211000338 (2021).

34. Xu, S., Kim, J., Walter, J. R., Ghaffari, R. & Rogers, J. A. Translational 
gaps and opportunities for medical wearables in digital health. 
Sci. Transl. Med. 14, eabn6036 (2022).

35. Torrente-Rodríguez, R. M. et al. Investigation of cortisol dynamics 
in human sweat using a graphene-based wireless mHealth 
system. Matter 2, 921–937 (2020).

36. Wang, B. et al. Wearable aptamer-field-effect transistor sensing 
system for noninvasive cortisol monitoring. Sci. Adv. 8, eabk0967 
(2022).

37. Sheibani, S. et al. Extended gate field-effect-transistor for sensing 
cortisol stress hormone. Commun. Mater. 2, 10 (2021).

38. Simmers, P., Li, S. K., Kasting, G. & Heikenfeld, J. Prolonged and 
localized sweat stimulation by iontophoretic delivery of the 
slowly-metabolized cholinergic agent carbachol. J. Dermatol. Sci. 
89, 40–51 (2018).

39. Sancini, A. & Tomei, F. Work related stress and blood glucose 
levels. Ann. Ig. 29, 123–133 (2017).

40. Hermann, R., Lay, D., Wahl, P., Roth, W. T. & Petrowski, K. Effects 
of psychosocial and physical stress on lactate and anxiety levels. 
Stress 22, 664–669 (2019).

41. Kubera, B. et al. Rise in plasma lactate concentrations with 
psychosocial stress: a possible sign of cerebral energy demand. 
Obes. Facts 5, 384–392 (2012).

42. Klous, L., de Ruiter, C. J., Scherrer, S., Gerrett, N. & Daanen, H. 
A. M. The (in)dependency of blood and sweat sodium, chloride, 
potassium, ammonia, lactate and glucose concentrations during 
submaximal exercise. Eur. J. Appl. Physiol. 121, 803–816 (2021).

43. Goodman, A. M. et al. The hippocampal response to psychosocial 
stress varies with salivary uric acid level. Neuroscience 339, 
396–401 (2016).

44. Nyein, H. Y. Y. et al. A wearable electrochemical platform for 
noninvasive simultaneous monitoring of Ca2+ and pH. ACS Nano 
10, 7216–7224 (2016).

45. Lin, S. et al. Wearable microneedle-based electrochemical 
aptamer biosensing for precision dosing of drugs with narrow 
therapeutic windows. Sci. Adv. 8, eabq4539 (2022).

http://www.nature.com/natureelectronics


Nature Electronics | Volume 7 | February 2024 | 168–179 179

Article https://doi.org/10.1038/s41928-023-01116-6

46. Tu, J. et al. A wireless patch for the monitoring of C-reactive 
protein in sweat. Nat. Biomed. Eng. 7, 1293–1306 (2023).

47. Shao, Y., Ying, Y. & Ping, J. Recent advances in solid-contact 
ion-selective electrodes: functional materials, transduction 
mechanisms, and development trends. Chem. Soc. Rev. 49, 
4405–4465 (2020).

48. Spielberger, C. D., Gorsuch, R. L., Lushene, R. E., Vagg, P. R. & 
Jacobs, G. A. (eds) Manual for the State-trait Anxiety Inventory  
(STAI Form Y) (Consulting Psychologists Press, 1983).

49. Frank, S. M. & Raja, S. N. Reflex cutaneous vasoconstriction during 
cold pressor test is mediated through α-adrenoceptors. Clin. 
Auton. Res. 4, 257–261 (1994).

50. Schwabe, L., Haddad, L. & Schachinger, H. HPA axis activation by 
a socially evaluated cold-pressor test. Psychoneuroendocrinology 
33, 890–895 (2008).

51. Khambam, S. K. R., Naidu, M. U. R., Rani, P. U. & Rao, T. R. K. 
Effect of cold stimulation-induced pain on pharmacodynamic 
responses in healthy human volunteers. Int. J. Nutr. Pharmacol. 
Neurol. Dis. 2, 26 (2012).

52. Buono, M. J., Lee, N. V. L. & Miller, P. W. The relationship between 
exercise intensity and the sweat lactate excretion rate. J. Physiol. 
Sci. 60, 103–107 (2010).

53. Maaten van der, L. & Hinton, G. Visualizing data using t-SNE.  
J. Mach. Learn. Res. 9, 2579–2605 (2008).

54. Hay, E. L. & Diehl, M. Reactivity to daily stressors in adulthood: the 
importance of stressor type in characterizing risk factors. Psychol. 
Aging 25, 118–131 (2010).

55. Crestani, C. C. Emotional stress and cardiovascular complications 
in animal models: a review of the influence of stress type. Front. 
Physiol. 7, 251 (2016).

56. Pow, J., Lee-Baggley, D. & DeLongis, A. Threats to communion and 
agency mediate associations between stressor type and daily 
coping. Anxiety Stress Coping 29, 660–672 (2016).

57. Scheid, T. L. & Brown, T. N. (eds) Handbook for the Study of Mental 
Health: Social Contexts, Theories, and Systems. (Cambridge Univ. 
Press, 2009); https://doi.org/10.1017/CBO9780511984945

Acknowledgements
This work was funded by the Translational Research Institute for Space 
Health through NASA NNX16AO69A, Office of Naval Research grant 
nos. N00014-21-1-2483 and N00014-21-1-2845, Army Research Office 
grant no. W911NF-23-1-0041, National Institutes of Health grant nos. 
R01HL155815 and R21DK13266, National Science Foundation grant 
no. 2145802, National Academy of Medicine Catalyst Award and High 
Impact Pilot Research Award no. T31IP1666 from the Tobacco-Related 
Disease Research Program and Heritage Medical Research Institute 
(all to W.G.). T.K.H. acknowledges the support from National  
Institutes of Health grant nos. T32HL144449 and T32EB027629.  
C.X. acknowledges support from an Amazon AI4Science Fellowship. 

ICP-MS instrumentation at the Resnick Sustainability Institute’s Water 
and Environment Lab at the California Institute of Technology was 
used in this work with the assistance of N. Dalleska. We acknowledge 
critical support and infrastructure provided for this work by the Kavli 
Nanoscience Institute at Caltech and Center for Transmission Electron 
Microscopy at the University of California Irvine, and we thank M. Hunt 
and M. Xu for their help.

Author contributions
W.G. and C.X. conceived the project. C.X. led the sensors and 
CARES platform development. C.X., Y.S. and J.R.S. led the platform 
characterization and human studies. S.A.S. and J.L. contributed 
to the data processing and feature extraction. H.Y.Y.N. contributed 
to sensor development. Y.Y., R.Y.T. and A.L. contributed to sensor 
characterization and testing. W.H. and J.M. contributed to wireless 
system development. T.K.H. and J.A.S. contributed to the human  
study design. W.G., C.X., Y.S., J.R.S. and S.A.S. cowrote the paper.  
All authors contributed to the data analysis and provided feedback  
on the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains 
supplementary material available at  
https://doi.org/10.1038/s41928-023-01116-6.

Correspondence and requests for materials should be addressed to 
Wei Gao.

Peer review information Nature Electronics thanks Sihong Wang and 
the other, anonymous, reviewer(s) for their contribution to the peer 
review of this work.

Reprints and permissions information is available at  
www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with 
the author(s) or other rightsholder(s); author self-archiving of the 
accepted manuscript version of this article is solely governed by the 
terms of such publishing agreement and applicable law.

© The Author(s), under exclusive licence to Springer Nature Limited 
2024

http://www.nature.com/natureelectronics
https://doi.org/10.1017/CBO9780511984945
https://doi.org/10.1038/s41928-023-01116-6
http://www.nature.com/reprints

	A physicochemical-sensing electronic skin for stress response monitoring
	The CARES platform
	Wearable sensors for long-term continuous operation
	Continuous daily monitoring across various activities
	ML approach for stress evaluation
	Conclusions
	Methods
	Materials
	Fabrication and assembly of the CARES device
	CARES patch fabrication
	Microfluidics fabrication
	IP gel fabrication

	Biosensor preparation and characterization
	Enzymatic sensor preparation
	Reference electrode preparation
	ISE sensor preparation
	In vitro sensor characterization

	Materials characterization
	Physical sensor characterization
	Microfluidics evaluation
	On-body evaluation of CARES for long-term continuous monitoring
	Subject recruitment
	On-body protocols
	Long-term multimodal sensor evaluation during daily activities
	Questionnaire for state anxiety evaluation
	Stressor 1: CPT
	Stressor 2: VR test
	Stressor 3: exercise
	Data collection in real-life activities

	ML pipeline for stress assessment
	Data preprocessing and feature extraction
	Model selection for stress classification
	Model selection for stress regression

	Reporting summary

	Acknowledgements
	Fig. 1 CARES for stress response monitoring.
	Fig. 2 Design and characterization of highly robust multimodal sensors.
	Fig. 3 On-body evaluation of the CARES in daily activities and under various types of physiological and psychological stressors.
	Fig. 4 ML-powered stress response assessment.




